Role of actin filaments in the axonal transport of microtubules.

نویسندگان

  • Thomas P Hasaka
  • Kenneth A Myers
  • Peter W Baas
چکیده

Microtubules originate at the centrosome of the neuron and are then released for transport down the axon, in which they can move both anterogradely and retrogradely during axonal growth. It has been hypothesized that these movements occur by force generation against the actin cytoskeleton. To test this, we analyzed the movement, distribution, and orientation of microtubules in neurons pharmacologically depleted of actin filaments. Actin depletion reduced but did not eliminate the anterograde movements and had no effect on the frequency of retrograde movements. Consistent with the idea that microtubules might also move against neighboring microtubules, actin depletion completely inhibited the outward transport of microtubules under experimental conditions of low microtubule density. Interestingly, visualization of microtubule assembly shows that actin depletion actually enhances the tendency of microtubules to align with one another. Such microtubule-microtubule interactions are sufficient to orient microtubules in their characteristic polarity pattern in axons grown overnight in the absence of actin filaments. In fact, microtubule behaviors were only chaotic after actin depletion in peripheral regions of the neuron in which microtubules are normally sparse and hence lack neighboring microtubules with which they could interact. On the basis of these results, we conclude that microtubules are transported against either actin filaments or neighboring microtubules in the anterograde direction but only against other microtubules in the retrograde direction. Moreover, the transport of microtubules against one another provides a surprisingly effective option for the deployment and orientation of microtubules in the absence of actin filaments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-Particle Tracking Reveals a Dynamic Role of Actin Filaments in Assisting Long-Range Axonal Transport in Neurons

Here, we demonstrated that actin filaments mediate axonal transport in dorsal root ganglia (DRG) neurons using fluorescence single-particle tracking. We employed a compartmentalized microfluidic cell culturing chamber that allows depolymerization of actin filaments within an axonal segment. We observed that local actin depolymerization results in a two-fold increase in the average pausing durat...

متن کامل

Transport of ER vesicles on actin filaments in neurons by myosin V.

Axoplasmic organelles in the giant axon of the squid have been shown to move on both actin filaments and microtubules and to switch between actin filaments and microtubules during fast axonal transport. The objectives of this investigation were to identify the specific classes of axoplasmic organelles that move on actin filaments and the myosin motors involved. We developed a procedure to isola...

متن کامل

Microtubule transport in the axon: Re-thinking a potential role for the actin cytoskeleton.

Microtubules are transported down the axon as short pieces by molecular motor proteins. One popular idea is that these microtubules are transported by forces generated against the actin cytoskeleton. The motor for such transport is thought to be cytoplasmic dynein. Here, the authors review this model and discuss recent studies that sought to test it. These studies suggest that the model is vali...

متن کامل

Movement of axoplasmic organelles on actin filaments assembled on acrosomal processes: evidence for a barbed-end-directed organelle motor.

The directionality of the actin-dependent motors on squid axoplasmic organelles was determined using actin filaments assembled on the barbed ends of acrosomal processes. Acrosomal processes were isolated from Limulus polyphemus sperm and incubated in monomeric actin under conditions that promoted barbed end assembly only. Newly assembled actin was stabilized and stained with rhodamine-phalloidi...

متن کامل

Cytoskeletal Mechanics and Mobility in the Axons of Sensory Neurons

Title of Document: Cytoskeletal Mechanics and Mobility in the Axons of Sensory Neurons Joshua Michael Chetta, Ph.D. 2011 Directed By: Assistant Professor Sameer Shah, Fischell Department of Bioengineering The axon is a long specialized signaling projection of neurons, whose cytoskeleton is composed of networks of microtubules and actin filaments. The dynamic nature of these networks and the act...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 50  شماره 

صفحات  -

تاریخ انتشار 2004